Kategori: Dergi Makaleleri

2D Konvolüsyonun İşleminin Düşük Maliyetli IP Çekirdek Olarak FPGA Tabanlı Gerçeklenmesi

Bu çalışma kapsamında görüntü işleme uygulamalarında sıklıkla tercih edilen iki boyutlu konvolüsyon işleminin düşük maliyetli IP çekirdek olarak FPGA tabanlı gerçeklenmesi anlatılmıştır. Çalışma kapsamında geliştirilen IP çekirdek ile görüntü üzerinde yatay/dikey Sobel, yatay/dikey Prewitt, kaydır çıkart, alçak geçiren filtre, yüksek geçiren filtre ve Gauss filtre işlemleri kullanıcı tarafından ayarlanan parametre ile kolaylık gerçeklenebilmektedir. IP çekirdek platform bağımsız olarak tasarlanmıştır ve tüm FPGA üreticileri tarafından geliştirilen yazılımlarda sentezlenebilmektedir. IP çekirdeğine ait sentez sonuçları Xilinx firmasının Artix 7 100T FPGA’sı referans alınarak verilmiştir. Sentez sonuçları çalışma kapsamında geliştirilen iki boyutlu konvolüsyon IP çekirdeğinin düşük donanım maliyeti ile FPGA tabanlı gerçeklendiğini göstermiştir.

Yapay Arı Koloni Algoritması ile Yapay Sinir Ağı Eğitiminin FPGA Üzerinde Donanımsal Gerçeklenmesi

Son zamanlarda Yapay Sinir Ağı (YSA) eğitimlerinde türev bilgisi gerektiren algoritmalara alternatif olarak küresel arama özelliğine sahip evrimsel algoritmalar sıklıkla kullanılmaktadır. Bu çalışmada YSA eğitimi, evrimsel algoritmalardan Yapay Arı Koloni (YAK) algoritması ile Alan Programlanabilir Kapı Dizileri (APKD) üzerinde donanımsal gerçekleştirilmiştir. APKD tabanlı gerçeklemede sayı formatı ve aktivasyon fonksiyonu yaklaşımı maliyet, hız ve hata duyarlılığı açısından önem arz etmektedir. Çalışmada yüksek hassasiyet ve dinamiklik özelliklerine sahip IEEE 754 kayan noktalı sayı formatı seçilmiştir. Üssel fonksiyonun donanımsal gerçeklenmesinin zor olması nedeni ile aktivasyon fonksiyonunun donanımsal gerçeklenmesinde matematiksel yaklaşım kullanılmıştır. Çalışmada araç plaka bölgesi tespiti probleminin çözümüne yönelik YSA mimarisi tasarlanmış ve YAK algoritması ile APKD üzerinde eğitilmiştir. Eğitilen ağın test verilerindeki %98.82 başarımı, APDK üzerinde eğitilen YSA’nın iyi bir genelleme yaptığını ve sentezleme sonuçları, uygulamanın APDK’da sadece %9’luk alan tüketimi ile gerçekleştirilebildiğini göstermiştir.

Sualtı Haberleşmede Çok Yolluluğun Bant Genişliği, Kapasite ve İletim Gücü Üzerindeki Etkisi

Sualtı ortamına yönelik haberleşme teknolojilerindeki gelişmeler, yeni sualtı akustik iletişim tekniklerinin ortaya çıkmasını sağlamıştır. Bu gelişmelere paralel olarak malzeme ve algılayıcı teknolojilerinin de gelişmeleri ile birlikte, bu teknolojiler uygulanabilir hale gelmiştir. Böylece sualtı ortamında yüksek bant genişliklerinde, uzak mesafelere veri iletimine yönelik çalışmalar artmıştır. Sualtı ortamının kaotik yapısı, kaynaktan alıcıya veri iletimini zor hale getirmektedir. Sualtında yüksek frekanslarda uzak mesafelere iletim gerçekleştirilememesi ve yüksek frekanslarda çalışacak şekilde tasarlanan sistemlerin sınırlı bant genişliğine sahip olması nedeni ile sualtı haberleşmeye yönelik çalışmalarda düşük frekanslar tercih edilmektedir. İki nokta arasında gerçekleştirilecek iletişim bant genişliğinden, kaynak iletim gücünden ve kaynak-alıcı arası mesafeden doğrudan etkilemektedir. İletişimin gerçekleştirileceği ortamda kaynaktan yayılan sinyaller algılayıcıda çok yollu olarak alınmaktadır. Özellikle yüzeyden ve dipten yansımalar, algılayıcıda alınan sinyallerin bozulmasına sebep olmaktadır. Bu çalışma kapsamında, sualtı ortamında literatürde önerilen iletim kaybı, emilim kaybı ve ortam gürültüsü modelleri kullanılarak bant genişliği, kapasite ve iletim gücü hesapları gerçekleştirilmiştir. Hesaplamalarda kaynaktan alıcıya ulaşan farklı sayıda çok yollu sinyaller, çok yollu sinyallerin maruz kaldığı farklı dip/yüzey yansıma zayıflamalarının ve kaynak alıcı arası mesafenin bant genişliği, kapasite ve iletim gücü üzerindeki etkisi analiz edilmiştir. Analizler sonucunda kaynaktan alıcıya ulaşan çok yollu sinyallerin sayısının, dip/yüzey yansıma zayıflamalarının seviyesinin ve kaynak alıcı arasındaki mesafenin bant genişliği, kapasite ve iletim gücünü doğrudan etkilediği görülmüştür.

Levenberg – Marquardt Algoritması ile YSA Eğitiminin Donanımsal Gerçeklenmesi

Levenberg-Marquardt (LM) algoritması yapay sinir ağlarının eğitiminde sağlamış olduğu hız ve kararlılık nedeni ile tercih edilmektedir. Bu çalışmada yapay sinir ağı (YSA) eğitiminin LM algoritması ile kayan noktalı sayı formatında donanımsal olarak FPGA’da gerçeklenmesi sunulmuştur. Donanımsal gerçekleme ISE Webpack10.1 programı kullanılarak Xilinx Virtex 5 xc5vlx110-3ff1153 FPGA’sı üzerinde gerçeklenmiştir. Çalışmada özellikle YSA mimarisinin doğasında var olan paralelliğin FPGA üzerine aktarılmasının yanı sıra eğitim aşamasında LM algoritması da paralel veri işlemeye uygun olarak gerçeklenmiştir. Elde edilen sentez sonuçları, LM ile YSA eğitiminin FPGA üzerinde başarı ile gerçeklenebileceğini ortaya koymuştur.

Nöral ve Bulanık Sistem Hücre Aktivasyon Yaklaşımları ve FPGA’da Donanımsal Gerçeklenmesi

Günümüzde nöral ve bulanık sistemler, çok geniş bir alanda kullanılan yöntemlerdir. Bu sistemlerin kendi özelliklerini sağlayan bir donanım ortamında gerçeklenmesi önemlidir. FPGA’lar paralel veri akışı ve paralel işlem yapma özellikleri ile nöral ve bulanık sistemlerin gerçeklenmesinde tercih edilen donanım olmaya başlamıştır. Bu sistemlerde kilit role sahip olan hücre aktivasyon fonksiyonunun, donanım üzerinde gerçeklenmesi önemlidir. Bu çalışmada, sıklıkla kullanılan logaritmik sigmoidal, hiperbolik tanjant sigmoidal ve Gauss tipi aktivasyon fonksiyonlarının matematiksel yaklaşımlarının tek duyarlıklı kayan noktalı sayı formatıyla FPGA’de gerçeklenmesi irdelenmiştir. Her bir fonksiyon için FPGA’de gerçeklemeye uygun yaklaşımı karşılaştırmalı olarak verilmiş, Xilinx firmasına ait Virtex 5 xc5vlx110-3ff1153 FPGA’sında gerçeklenerek elde edilen sentez sonuçları sunulmuştur. Elde edilen deneysel sonuçlar, önerilen gerçekleme yaklaşımlarının çok az donanımsal kaynak tükettiğini göstermiştir. Önerilen bu yaklaşımlar kullanılarak çeşitli yapılarda nöral ve bulanık sistemler gerçeklenebilir.

Parçacık Sürü Optimizasyonu Algoritması ile Yapay Sinir Ağı Eğitiminin FPGA Üzerinde Donanımsal Gerçeklenmesi

Bu çalışmada YSAnın doğasına uygun olarak paralel işlemlerle, FPGA üzerinde, YSA eğitimi için yeni bir yaklaşım sunulmuştur. Eğitim türev bilgisine ihtiyaç duymaksızın, rastgele arama algoritması olan parçacık sürü optimizasyonu (PSO) kullanılarak FPGA üzerinde gerçeklenmiştir. FPGA’de ilgili tüm parametre değerleri ve işlemler IEEE 754 kayan noktalı sayı formatında tanımlanmıştır. Önerilen yaklaşım örnek bir YSA mimarisi baz alınarak VHDL dilinde kodlanıp Altera EP2C35F672C6 FPGA’sı üzerinde gerçeklenmiştir. Elde edilen sonuçlar önerilen yaklaşımın YSA eğitimini başarı ile gerçeklediğini göstermiştir.